Clinical Guidelines

Acute Severe Asthma

Document Control Information

<table>
<thead>
<tr>
<th>Author</th>
<th>E Randle</th>
<th>Author Position</th>
<th>CATS Consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Owner</td>
<td>E Polke</td>
<td>Document Owner Position</td>
<td>Co-ordinator</td>
</tr>
<tr>
<td>FirstIntroduced</td>
<td>January 2016</td>
<td>Review Schedule</td>
<td>2 Yearly</td>
</tr>
<tr>
<td>Active Date</td>
<td>January 2016</td>
<td>Next Review</td>
<td>January 2018</td>
</tr>
<tr>
<td>CATS Document Number</td>
<td>0920092013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable to</td>
<td>All CATS employees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Children’s Acute Transport Service provides paediatric intensive care retrieval funded and accountable to the North Thames Paediatric Intensive Care Commissioning Group through Great Ormond Street NHS Trust.

Cats_Acute Severe Asthma_2013
1. **Assessment**

1.1 **Past History**
- Frequency of attacks
- Routine medications
- Number of courses of steroids
- Previous ICU admissions + intubations

1.2 **Current Status**
- Duration of attack
- Assessment of severity (see below)
- Treatment (dose/frequency of nebs, IV therapy, steroids)

<table>
<thead>
<tr>
<th>Acute Severe</th>
<th>Life Threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can’t complete sentences in one breath or too breathless to feed</td>
<td>Silent chest</td>
</tr>
<tr>
<td>Pulse >120 in age >5 yrs</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>>130 in age 2-5 yrs</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td>Respiration >30/min age >5yrs</td>
<td>Hypotension</td>
</tr>
<tr>
<td>>50/min age 2-5 yrs</td>
<td>Exhaustion</td>
</tr>
<tr>
<td>PEFR* <50% best</td>
<td>Confusion</td>
</tr>
<tr>
<td>Saturations <92% in room air</td>
<td>Coma</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* PEFR very difficult to interpret in young/dyspnoeic patients

If severely unwell or first attack, consider alternative diagnoses, i.e. pneumothorax, collapsed lobe, foreign body, upper airway obstruction or pneumonia. Perform chest x-ray.

2. **Initial Management of Severe Asthma**

2.1 **Oxygen**
Children with severe or life threatening asthma or SpO₂<92% should receive high flow oxygen via a tight fitting mask or nasal cannula to achieve normal saturations.

2.2 **Nebulised Bronchodilators**
Children with severe or life threatening asthma should receive frequent or ‘back to back’ doses of salbutamol (2.5 - 5mg). Add ipratropium bromide nebulisers. Usual dose of ipratropium is 250 mcg (125 mcg for <2 years).
2.3 Steroid Therapy
Steroids should be given early. Benefits are seen in 3-4 hours. In severe asthma, 4 mg/kg of intravenous hydrocortisone should be given 4 hourly, since most children are unable to tolerate oral Prednisolone.

2.4 Intravenous Salbutamol
Consider early addition of a 15 mcg/kg bolus of salbutamol given over 20 minutes (maximum 250 mcg). In children <5 years old, the loading dose is 5 mcg/kg/min over 20 minutes.

Follow this up with a continuous infusion in refractory asthma at 1mcg/kg/min. (Higher doses should be discussed with CATS).

Reduce infusion rate if side effects occur: lactic or metabolic acidosis, tachycardia, arrhythmias, tremor, severe hypokalaemia, hyperglycaemia, and hypophosphataemia.

Note: increasing tachypnoea on IV salbutamol may indicate toxicity and metabolic acidosis rather than worsening of asthma.
Patients on intravenous salbutamol should have continuous ECG monitoring and regular monitoring of potassium and lactate.

2.5 IV Aminophylline
Aminophylline may be useful in children with refractory severe or life threatening bronchospasm.
5 mg/kg loading dose (maximum 500 mg) should be given over 20 minutes with ECG monitoring.
A loading dose must not be given to patients on oral theophylline treatment.
The loading dose is usually followed by a continuous infusion at 1mg/kg/hour (in >12 years, infusion rate: 0.5 – 0.7 mg/kg/hr).

2.6 IV Magnesium Sulphate
Magnesium sulphate may be useful as an adjunct in acute severe asthma. 40-50 mg/kg should be given by slow infusion over 30 minutes. This may be repeated in 1-2 hours. Serum magnesium level measurement is indicated if further doses are being considered. Hypotension caused due to vasodilatation is the most common side effect.
3. **Indications for intubation**

Blood gas analysis is not a substitute for clinical assessment

3.1 **Consider intubation in any child with the following:**
- Tired
- Reduced conscious level
- Worsening hypoxaemia

3.2 **Intubation**
- The most experienced person available should intubate the child.
- Pre-oxygenate
- 10 - 20 mls/kg colloid/crystalloid bolus
- You will need a tight fitting ETT as necessary airway pressures may be high. Consider a cuffed tube.
- Consider modified rapid sequence induction with ketamine 1 - 2 mg/kg (has some bronchodilator activity) and suxamethonium 1 - 2 mg/kg
- Avoid morphine and atracurium (histamine release)

4. **Management Following Intubation**

Most frequent complication following intubation is hypotension – give fluid boluses as required. Acute bronchospasm is also common – consider using inhalational agents (sevoflurane).

- Sedate and paralyse for ventilation. A combination of midazolam and ketamine, or fentanyl and midazolam can be used for sedation. Vecuronium can be used for paralysis. Inhalational agents such as sevoflurane (have bronchodilatory properties) may also be used for ongoing sedation.
 - Pursue a pressure limited permissive hypercapnia strategy (pH ≥ 7.2)
 - Limit PIP < 35 cm H₂O
 - Keep tidal volume 5-7 ml/kg
 - Low rate (10 - 15 bpm)
 - I: E ratio of at least 1:2
 - PEEP of 5-7 is often necessary
 - High thoracic pressure may compromise venous return resulting in hypotension – give fluid bolus.
 - Regular chest physiotherapy and suctioning for mucus plugging.
- Check CXR for ETT position and to exclude pneumothorax, insert chest drain if pneumothorax present
- Monitor for potassium and lactate.

5. **Transport considerations**

- Watch for pneumothorax, auto-PEEP and mucus plugging.
- If child desaturates, disconnect ventilator, bag, auscultate and consider manual decompression.